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Abstract.15

Background: Besides their other roles, brain imaging and other biomarkers of Alzheimer’s disease (AD) have the potential
to inform a cognitively unimpaired (CU) person’s likelihood of progression to mild cognitive impairment (MCI) and benefit
subject selection when evaluating promising prevention therapies. We previously described that among baseline FDG-PET
and MRI measures known to be preferentially affected in the preclinical and clinical stages of AD, hippocampal volume
was the best predictor of incident MCI within 2 years (79% sensitivity/78% specificity), using standard automated MRI
volumetric algorithmic programs, binary logistic regression, and leave-one-out procedures.

16

17

18

19

20

21

Objective: To improve the same prediction by using different hippocampal features and machine learning methods, cross-
validated via two independent and prospective cohorts (Arizona and ADNI).
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Methods: Patch-based sparse coding algorithms were applied to hippocampal surface features of baseline TI-MRIs from
78 CU adults who subsequently progressed to amnestic MCI in approximately 2 years (“progressors”) and 80 matched
adults who remained CU for at least 4 years (“nonprogressors”). Nonprogressors and progressors were matched for age, sex,
education, and apolipoprotein E4 allele dose. We did not include amyloid or tau biomarkers in defining MCI.
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Results: We achieved 92% prediction accuracy in the Arizona cohort, 92% prediction accuracy in the ADNI cohort, and
90% prediction accuracy when combining the two demographically distinct cohorts, as compared to 79% (Arizona) and 72%
(ADNI) prediction accuracy using hippocampal volume.
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Conclusion: Surface multivariate morphometry and sparse coding, applied to individual MRIs, may accurately predict
imminent progression to MCI even in the absence of other AD biomarkers.
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INTRODUCTION34

Even though simple blood tests [1–3] promise to35

become a useful and less expensive tool for assess-36

ing a person’s diagnosis and prognosis in the early37

clinical and preclinical stages, structural magnetic38

resonance imaging (MRI) remains the most com-39

mon biomarker assessment tool in current clinical40

practice. Typically, volumetric methods have uti-41

lized mass-univariate or region of interest methods42

to detect cortical thickness, grey matter volume,43

and surface areas. Accordingly, we recently reported44

findings from a prospective cohort of cognitively45

unimpaired individuals to estimate a priori MRI46

regions of interests (preferentially affected in the47

preclinical and clinical stages of Alzheimer’s dis-48

ease (AD)) for differences between those individuals49

who subsequently progressed to clinically signifi-50

cant memory decline in approximately 2 years and51

those who did not. Additionally, the same study also52

used Statistical Parametric Mapping (SPM) (http://53

www.fil.ion.ucl.ac.uk/spm/) to examine the 18F-flu-54

orodeoxyglucose (FDG) positron emission tomog-55

raphy (PET) measured cerebral metabolic rate for56

glucose (CMRgl) differences between progressors57

and nonprogressors. Based on receiver operat-58

ing characteristic, binary logistic regression, and59

leave-one-out procedures, hippocampal volume best60

predicted an individual’s imminent progression to the61

clinically significant memory decline, with 79% sen-62

sitivity/78% specificity among the APOE-matched63

cohort [4].64

Multivariate methods appear to improve detection65

of subtle changes in MRI-based morphological fea-66

tures of structures relevant to preclinical detection67

of AD [5–7]. Machine learning methods promise68

to improve the accuracy of prediction for individ-69

ual patients, particularly when applied to MRI based70

multiple features as with multivariate morphome-71

try statistics (MMS), in the preclinical stages of72

AD [8–10]. In this study, we aimed to improve73

prediction from prior studies by employing the74

hippocampal surface MMS features, which have75

been shown to outperform the hippocampal vol-76

ume measure [6, 11], and the patch based sparse77

coding algorithm to predict clinically significant78

memory impairment within two years, even in79

the absence of other amyloid, tau, PET, cere-80

brospinal fluid (CSF), or emerging blood-based bio-81

markers.

METHODS 82

Participants 83

Arizona cohort 84

These study participants were a sub-cohort of 85

280 drawn from our 23-year longitudinal Arizona 86

APOE cohort study [12, 13]. As previously described 87

[4], 18 “progressor” participants developed clinically 88

significant memory impairment (16 diagnosed with 89

amnestic MCI (aMCI), 1 with both amnestic and 90

visuospatial MCI, and 1 with AD) and had both 91

MRI and FDG PET data while still cognitively unim- 92

paired at the epoch approximately 2 years prior to 93

progression to aMCI/AD, and 20 “nonprogressor” 94

participants who remained cognitively unimpaired 95

at least 4 years after their last visits, all based on 96

clinical, informant, neuropsychological data, and a 97

Mini-Mental State Examination (MMSE) score > 26. 98

The progressors and nonprogressors were matched 99

for sex, age, education, and APOE allele dose. Par- 100

ticipants with one abnormal score could be deemed 101

clinically unimpaired if all other scores within the 102

same cognitive domain were solidly normal and there 103

were no functional impairments. The aMCI diagno- 104

sis was determined based on published criteria [14, 105

15] using clinical, functional, and neuropsychologi- 106

cal data that included a wide battery of tests with > 1 107

test per domain. Though we subsequently introduced 108

amyloid PET and tau PET to this overall study, we did 109

not have these data for this specific sub-cohort avail- 110

able at baseline and therefore did not have amyloid 111

or tau biomarkers to confirm AD pathology. 112

ADNI cohort 113

The Principal Investigator of this initiative is 114

Michael W. Weiner, MD, VA Medical Center and 115

University of California – San Francisco. For up- 116

to-date information, see http://www.adni-info.org. 117

Study participants were drawn from ADNI data bases 118

utilizing the same criteria to categorize and match 119

progressors and nonprogressors described above for 120

the Arizona cohort. From ADNI-1, ADNI-2, ADNI- 121

Go, and ADNI-3 we found 60 participants who 122

developed clinically significant memory impairment, 123

i.e., aMCI, in approximately 2 years and 60 age, sex, 124

education and APOE-matched nonprogressors who 125

remained cognitively unimpaired for at least 4 years. 126

“Baseline” scans were the MRI scans from progres- 127

sors at 2 years prior to clinically significant decline 128

and the corresponding matched nonprogressors’ MRI 129

scans. 130

http://www.fil.ion.ucl.ac.uk/spm/
http://www.adni-info.org
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The parent study for the Arizona cohort was131

approved by the Mayo Clinic and Banner Health132

(originally Banner Good Samaritan) Institutional133

Review Boards, and after complete description of the134

study to the subjects, written informed consent was135

obtained.136

Hippocampus segmentation and surface137

reconstruction138

All the T1-weighted MR images were automat-139

ically segmented by using FIRST [16], which is a140

model based subcortical structure registration and141

segmentation tool that we have used in our pre-142

vious hippocampal morphometry research [6, 10,143

11]. In comparison to FreeSurfer, FIRST is capa-144

ble of generating topologically sound segmentation145

results with classification of relatively large, scaled146

databases. FIRST is one part of FSL library devel-147

oped mainly by Analysis Group, FMRIB, Oxford,148

UK. With default parameters, we ran the run first all149

command and extracted the segmentation of left and150

right hippocampi. Then all the extracted images were151

binarized with a simple thresholding process. With152

the binary images, hippocampal surfaces were con-153

structed with a topology-preserving level set method154

[18] and triangular surface meshes were further155

acquired based on marching cubes algorithm [19]. We156

then refined the meshes [6] to get the smooth surfaces157

which are suitable for generating conformal grids.158

Finally, all these smoothed meshes were aligned into159

the MNI standard space with a 9-DOF (degree of160

freedom) global affine transformation (Fig. 1).161

Surface conformal representation162

On each hippocampal surface, we generated a163

conformal grid as a canonical space for surface regis-164

tration and multivariate statistical analysis [6]. Firstly,165

two cuts were introduced on the hippocampal surface166

(Fig. 2) and thus the surface could be converted into167

a tube-like genus zero surface. The two cuts locate at168

the front and back of the hippocampal surfaces, rep-169

resenting anterior junction with the amygdala, and170

its posterior limit as it turns into the white matter171

of the fornix. Thus, they are biologically valid and172

can be used as consistent landmarks across subjects.173

With the tube-like surface, the landmark curves can174

be automatically determined by locating the extreme175

points and searching along the first principle direc-176

tion of geometric moments of the surface [7, 20, 21].177

Finally, we calculated the holomorphic 1-form basis178

of each tube-like surface and conformally mapped the 179

hippocampal surface to a planar surface. 180

Many of the geometric features of the surface could 181

be contained in the conformal parameterization. In 182

this paper, we calculated the local conformal factor 183

and mean curvature, which represents the intrinsic 184

and extrinsic features of the surface respectively. The 185

conformal factor is the area ratio of the infinitesimal 186

region around the same point on the original hip- 187

pocampal surface and the conformal planar surface. 188

Mean curvature is an extrinsic measure of curvature 189

which comes from differential geometry and can rep- 190

resent the flatness of the surface around a vertex. Both 191

the conformal factor and mean curvature are local fea- 192

tures defined on each vertex. The conformal factor 193

and mean curvature are called the surface conformal 194

representation because they can encode both intrinsic 195

structure and 3D embedding information. 196

Hippocampal surface registrations 197

All the hippocampal surfaces need to be regis- 198

tered to a common template surface for morphometric 199

analysis. We used the aforementioned features, sur- 200

face conformal factor and mean curvature, to enforce 201

surface correspondence. So, with the conformal 202

parameterization, we converted the 3D surface to a 203

2D image registration problem. We applied the well- 204

studied image fluid registration algorithm [22, 23] to 205

induce a deformation flow in the parameter domain. 206

To simulate fluid flow on the surfaces, we introduced 207

the Navier-Sokes equation into surface space using 208

a manifold version of the Laplacian and divergence 209

operators [24, 25]. With an inverse consistent frame- 210

work, we could optimize the surface registration by 211

minimizing the sum of squared surface feature inten- 212

sity differences between the deforming image and 213

the template. Since both the conformal mapping and 214

the inverse consistent framework generate diffeomor- 215

phic mappings, the mapping between the surfaces is 216

diffeomorphic. 217

Surface multivariate morphometry statistics 218

Surface MMS consists of two different features: 219

multivariate tensor-based morphometry (mTBM) 220

[26] and radial distance analysis [27, 28]. The mTBM 221

can measure the deformation within the surface while 222

the radial distance can measure hippocampal size 223

according to the surface normal direction. 224

The mTBM statistics measure local surface defor- 225

mation and have demonstrated improved signal 226
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Fig. 1. Hippocampus segment The blue and green parts in these images represent the left and right hippocampus that FIRST segments of
the image. The bottom right picture shows the shape of the hippocampal surface, which fits the segmented image well.

detection power relative to more standard tensor-227

based morphometry (TBM) measure computed as the228

determinant of Jacobian matrix [29].229

Since the hippocampal surface is cut like a tube,230

the distance from each surface point to its medi-231

cal core is affected by its atrophy and enlargement.232

We named the distance as the radial distance of a233

hippocampus surface, which represents the morpho-234

metric changes along the surface normal direction.235

Thus, radial distance and mTBM are complementary236

to each other; finally, we formed the new multivari-237

ate surface morphometry statistic as a 4×1 vector,238

of which the mTMB was computed as a 3×1 vector239

consisting of the “Log-Euclidean metric” [30] and 240

the radial distance is just a scalar. 241

Patch analysis-based surface 242

correntropy-induced- sparse-coding (PASCS) 243

Recently, sparse representation and sparse coding 244

methodology developed in the machine learning field 245

has been shown to be efficient in learning diverse 246

and discriminative features for optimal representa- 247

tions [31, 32]. Our prior work adopting sparse coding 248

for MRI data analysis in AD showed promising per- 249

formance [33–36]. The basic idea of sparse coding is 250
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Fig. 2. Hippocampal surface morphometry pipeline (a) The hippocampus is segmented from T1-weighted images and a conformal grid is
built on the surface. Here examples are shown for 2 different subjects. (b) Examples of features selected in the image for the two subjects
in (a). (c) From left to right: Intensity map on the surface 1 in (a). Forward map f(x) for the conformal grid fluid registration to the image 2.
Backward map b(x) from the image 2 to image 1. Intensity map on the surface 2. (d). Surface multivariate morphometry statistics is applied
to analyze morphometric changes.

to generate an over-complete dictionary that allows251

us to represent the original high-dimensional features252

with a sparse coefficient matrix (sparse codes) for253

learning the optimal representation. The advantage254

of sparse coding is that it can use a small number of255

basis vectors to represent local features effectively256

and concisely and help extract the most discrimi-257

native features for image content analysis. Sparse258

coding has shown to be efficient for many medi-259

cal image tasks, including image classification [37],260

image denoising [38], image segmentation [39], and261

functional connectivity [40]. In our research, we use262

the combination of surface patch features as input263

and construct both dictionary and their sparse codes264

to reconstruct the input features. Usually, the objec-265

tive function aims to optimize two terms: the first266

term measures how well it represents the surface267

patches, and the second term ensures the sparsity of268

the representation, with an l1-regularized correntropy 269

loss function. In this work, stochastic coordinate cod- 270

ing [42] is adopted due to its ability to dramatically 271

reduce the computational cost while keeping compa- 272

rable performance. We further use the learned sparse 273

representation as surface features. 274

Patch selection with sparse coding 275

After registering each hippocampal surface to a 276

uniformed grid, each surface contains 150 ∗ 100 ver- 277

tices and the feature dimension of each hippocampal 278

surface is 60,000, where each vertice has 1 ∗ 4 dimen- 279

sional MMS features. We then randomly generated 280

10×10 square windows on each hippocampal sur- 281

face and collected 504 surface patches with different 282

amounts of overlapping on each side of the hippocam- 283

pus. We randomly selected 1008 patches on each 284
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Fig. 3. Patch-based sparse coding system (a) Surface multivariate morphometry statistics. (b) Generate patches and randomly select patches
on the surface. (c) Dictionary learning and sparse coding. (d) Sparse patch-based features got from (c). (e) Max-pooling to resize the features
in (d). (g) Classification by using random forest classifier with the features after Max-pooling.

subject’s hippocampal surfaces (1008 for both left285

and right). For different subjects, we used the same286

random seed to choose the patches. In other words,287

the distribution for the random-selected patches is the288

same on the hippocampal surfaces for all the sub-289

jects. Then we reformed these patches of features290

to a vector, of which the dimension is 400×1008.291

The dictionary was initialized by randomly select-292

ing patches [43], which has proved to be an efficient293

method in practice, and then we started learning the294

dictionary and sparse codes by stochastic coordinate295

coding [42]. The size of the batch is one and the model296

is trained for ten epochs. After sparse coding, we297

acquired 1008 samples, each of which has 1800 fea-298

tures on each subject. Finally, with max-pooling, we299

chose the maximum values for each feature over 1008300

patches and obtained 1800-dimensional features for301

each subject.302

In this study, we chose random forest algorithm303

[44]. Random forests are a combination of tree304

predictors such that each tree depends on the values305

of a random vector sampled independently and 306

with the same distribution for all trees in the forest 307

(Fig. 3). This algorithm adapts a learning process 308

called “feature bagging.” In this process, we selected 309

a random subset of the features for several times 310

and then trained a decision tree for each subset. If 311

some features are strong predictors for the response, 312

they will be selected in many decision trees and 313

thus make them correlated. In comparison with 314

decision trees, random forests have the same bias but 315

lower variance, which means it can overcome the 316

drawback of overfitting caused by the small data set. 317

For our sparse surface features, when the training 318

number becomes smaller, diversification becomes 319

more subtle, and the method can better detect these 320

subtle differences. Finally, we employed cross- 321

validation to evaluate the performance of the classifi- 322

cation. For the k-fold cross-validation, we randomly 323

shuffled the dataset and split it to k groups. For each 324

group, we take it as the test data set and use the 325

remaining groups to train a model. Then, the model 326
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Table 1
Characteristics progressors and nonprogressors at the time of base-

line scan

Progressors Nonprogressors p

Sex (M/F) 7/11 (AZ) 7/13 (AZ) 0.80
25/35 (ADNI) 25/35 (ADNI) 1.00

�4 Genotype
(N)

13:03:02 (AZ) 13:04:03 (AZ) 0.89

2:17:41 (ADNI) 1:17:42 (ADNI) 0.99
% (HM:HT:

NC)
(72:17:11) (AZ) (65:20:15) (AZ)

(0:39:61) (ADNI) (0:21:79) (ADNI)
Age 68.75 ± 4.65 (AZ) 66.76 ± 3.29 (AZ) 0.13

76.97 ± 6.89 (ADNI) 75.19 ± 5.62 (ADNI) 0.12
Education 16.44 ± 1.69 (AZ) 15.50 ± 3.33 (AZ) 0.29

15.95 ± 2.87 (ADNI) 16.12 ± 2.74 (ADNI) 0.70

Sex and genotype p-values were calculated by chi-squared tests,
Age and education p-values were calculated by t-tests. HM, �4
homozygote; HT, �4 heterozygote; NC, �4 non-carrier; AZ, Ari-
zona cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative
cohort.

is evaluated by the test group. In this way, we can327

get a predicted class label for all the samples. To328

indicate the number of correct class labels, we built329

a contingency table, of which the rows are the true330

classes and the columns represent assigned classes.331

And then, we could represent the combination of332

ground truth and predicted result as

{
C11 C12

C21 C22

}
333

and compute the following performance measures,334

Sensitivity = C11/ (C11 + C12) , Specificity = C22/335

(C21 + C22) and Accuracy = (C11 + C22) /(C11+336

C12 + C21 + C22).337

Data availability338

Any data not published within the article is avail-339

able, and anonymized data will be shared by request340

from any qualified investigator.341

RESULTS342

Characteristics of the progressors and nonpro-343

gressors are shown in Table 1. Overall, the ADNI344

participants were older and had a greater percentage345

of males and APOE4 non-carriers than the Arizona346

participants.347

Prediction results are shown in Tables 2 and 3.348

In the Arizona cohort, the prediction result of pro-349

gression to clinically significant decline using hippo-350

campal surface MMS features was achieved with351

92% accuracy and 89% sensitivity and 95% speci-352

ficity. The same method with the ADNI cohort353

achieved 92% accuracy, 88% sensitivity, and 97%354

Table 2
Experimental results: Arizona and ADNI cohorts (leave-one-out

cross-validation)

Hippocampal MMS MMS left MMS right
surface

Accuracy 0.92 (AZ) 0.74 (AZ) 0.66 (AZ)
0.92 (ADNI) 0.85 (ADNI) 0.84 (ADNI)

Sensitivity 0.89 (AZ) 0.72 (AZ) 0.61 (AZ)
0.88 (ADNI) 0.84 (ADNI) 0.83 (ADNI)

Specificity 0.95 (AZ) 0.75 (AZ) 0.70 (AZ)
0.97 (ADNI) 0.87 (ADNI) 0.85 (ADNI)

Multivariate morphometry statistics (MMS) column indicates the
classification results with MMS from both left and right hippocam-
pal surfaces while MMS left and MMS right columns are the
classification results with MMS from left and right hippocampal
surfaces, respectively. AZ, Arizona Cohort; ADNI, Alzheimer’s
Disease Neuroimaging Initiative Cohort.

Table 3
Experimental results: combined cohorts (5-fold cross-validation)

Hippocampal surface MMS MMS left MMS right

Accuracy 0.90 0.84 0.80
Sensitivity 0.90 0.82 0.79
Specificity 0.90 0.85 0.81

Multivariate morphometry statistics (MMS) column indicates the
classification results with MMS from both left and right hippocam-
pal surfaces while MMS left and MMS right columns are the
classification results with MMS from left and right hippocampal
surfaces, respectively.

specificity. Combining the Arizona and ADNI coh- 355

orts (78 progressors and 80 nonprogressors) achieved 356

90% prediction accuracy, 90% sensitivity, and 90% 357

specificity. 358

A post-hoc analysis using random forest classifica- 359

tion and leave-one-out cross-validation showed that 360

AVLT long-term memory (LTM) scores predicted 361

progression with only 74% prediction accuracy (65% 362

sensitivity and 83% specificity) in the Arizona cohort, 363

and 62% prediction accuracy (59% sensitivity and 364

65% specificity) in the ADNI cohort despite the 365

potential bias of using that same measure (along with 366

other criteria) when making the diagnosis of aMCI. 367

Furthermore, as a comparison to our new methods 368

that utilize surface multivariate morphometry, pre- 369

diction of aMCI using baseline hippocampal volume, 370

random forest classification with leave-one-out cross- 371

validation in the same data sets yielded only 79% 372

prediction accuracy in the Arizona cohort and 72% 373

in the ADNI cohort (Table 4). 374

DISCUSSION 375

This study extended previous work by show- 376

ing that combining hippocampal surface MMS and 377
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Table 4
Hippocampal volume prediction using random forest classifier and

leave-one-out cross-validation

Hippocampal
Volume∗

Accuracy Sensitivity Specificity

Left hippocampus 0.74 (AZ) 0.65 (AZ) 0.83 (AZ)
0.68 (ADNI) 0.68 (ADNI) 0.68 (ADNI)

Right hippocampus 0.74 (AZ) 0.80 (AZ) 0.67 (AZ)
0.65 (ADNI) 0.60 (ADNI) 0.70 (ADNI)

Left+Right
hippocampus

0.79 (AZ) 0.85 (AZ) 0.72 (AZ)

0.72 (ADNI) 0.69 (ADNI) 0.73 (ADNI)
∗The automated brain mapping algorithmic program FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) was used to pre-process MRI
volumetric data.

machine learning methods affords improved pre-378

diction of imminent clinically significant cognitive379

decline compared to typical automated volumetric380

MRI methods and standard statistics. Our methods381

achieved high prediction accuracy in two separate and382

independent data sets, each balanced for age, sex, and383

presence or absence of the APOE4 allele, even in the384

absence of other brain imaging or fluid biomarkers385

of AD. Furthermore, we retained accuracy when the386

two data sets, which differed from each other in age,387

sex, and percentage APOE4 carriers, were combined.388

The predictions using hippocampal surface MMS and389

machine learning methods were also much better than390

predictions using either hippocampal volume or base-391

line cognitive scores, even though the latter are biased392

due to the circularity of using the same measure393

when making the diagnosis of aMCI. Although lack-394

ing amyloid and tau biomarker confirmation of AD395

pathology in this study, the data set from Arizona is396

well-defined, with high confidence regarding the like-397

lihood of AD in those who subsequently developed398

aMCI. Thus far, the majority of those in the Arizona399

progressor group later developed definite or probable400

AD, with the exception of one person who developed401

dementia with Lewy bodies and one aMCI individual402

who 2 years later had slight improvement in cogni-403

tion. Although we do not know how many of those in404

the nonprogressor group will ultimately develop AD,405

we have high confidence that none developed MCI406

for 4 years following the scan. To date, 3 in the Ari-407

zona nonprogressor group subsequently developed408

MCI and none have progressed to dementia. Thus,409

the training and testing groups were well defined and410

mostly accurate, which mirrors the accuracy of our411

novel feature-based sparse coding methods. Instead412

of using the automated brain mapping algorithmic413

programs FreeSurfer (http://surfer.nmr.mgh.harvard.414

edu/) and Statistical Parametric Mapping (http://415

www.fil.ion.ucl.ac.uk/spm/) as we did in our prior 416

study with the same data set [4], in this study we 417

utilized arguably more sensitive methods involving 418

MMS to discover subregional hippocampal surface 419

differences, patched-based sparse coding for feature 420

selection, and the random forest machine learning 421

classifier. We were able to replicate our improved 422

results in a completely independent data set from 423

ADNI that differed from the Arizona data set in age, 424

sex, and percentage APOE4 carriers. 425

Because the Arizona data set was identical to 426

our prior study [4], the improved accuracy in this 427

study can be explained by our use of hippocam- 428

pal surface MMS combined with patch-based sparse 429

coding algorithms. Similar to the methods from our 430

most recent work [36], in this paper we propose 431

a novel Patch Analysis-based Surface Correntropy- 432

induced Sparse coding, PASCS, to help predict future 433

cognitive decline. We demonstrate that PASCS is 434

surprisingly useful for surface features classifica- 435

tion and surface multivariate morphometry statistics 436

features consisting of surface multivariate tensor- 437

based morphometry and radial distance (the distance 438

from the medial core to each surface point), and we 439

also move a step forward from group difference to 440

that of individual subject classification. Unlike other 441

sparse coding work [37–40], PASCS takes advan- 442

tage of surface morphometry features that practically 443

encode neighboring intrinsic 3D geometry informa- 444

tion. Meanwhile, MMS features also benefit from 445

the succinct representation and strong discrimina- 446

tion power that sparse coding provides for effective 447

AD classifications, i.e., capturing more important 448

information so that MMS features not only have the 449

significant group difference but also have an effective 450

classification power. 451

In this work, we adopted FIRST for hippocampus 452

segmentation, which, having previously explored dif- 453

ferent segmented hippocampal data as input, appears 454

to most reliably generate topologically sound seg- 455

mentation results. For example, our earlier work used 456

manually segmented hippocampi to build surface 457

meshes [26, 45]. Later, we adopted FIRST for auto- 458

matic hippocampus segmentation [6] and used it in 459

almost all our hippocampal morphometry research. 460

Meanwhile, we also used FreeSurfer segmented hip- 461

pocampi to build hippocampal surface meshes [17]. 462

All achieved reasonable results in group differ- 463

ence studies, thus demonstrating that our pipeline 464

is robust to segmentation methods. However, FIRST 465

can always generate topologically sound segmenta- 466

tion results, whereas FreeSurfer does not guarantee 467

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
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Table 5
Classifications for 10 different patch selections

Cohorts AZ ADNI Combined

Accuracy ± SD 0.89 ± 0.02 0.90 ± 0.01 0.90 ± 0.02
Sensitivity ± SD 0.85 ± 0.04 0.89 ± 0.02 0.90 ± 0.04
Specificity ± SD 0.93 ± 0.06 0.91 ± 0.02 0.90 ± 0.04

We repeated the experiments ten times with ten different patch
selections on both sides of the hippocampal surface. The left and
middle columns of the table indicate the classification results for
the AZ cohort and ADNI cohort respectively with leave-one-out
cross-validation. The last column shows the results for the com-
bined cohorts with 5-fold cross-validation. SD, standard deviation.

topologically correct results. Therefore, manual qual-468

ity control is necessary to incorporate FreeSurfer469

in our pipeline. Thus far, our related prediction/470

classification work adopted FIRST segmented hip-471

pocampal surfaces in order to more efficiently work472

with relatively large-scaled datasets [10, 11]. Since473

the input of our MMLC is the surface features474

rather than the output from segmentation tools, it475

is reasonable for us to expect that our method is476

not sensitive to the hippocampus segmentation tools477

used.478

To evaluate the influence of these random-select479

patches on the classification accuracy and the stabil-480

ity of our framework, we repeated the experiments481

ten times with ten different patch selection on both482

sides of the hippocampal surface. The mean and stan-483

dard deviation of the results are shown in Table 5.484

The results show our method is relatively stable with485

different patch selection and comparable to the best486

accuracy results reported in Tables 2 and 3. It is worth487

noting that the variance results were not purely caused488

by the patch selection, since other components in the489

pipeline, such as random forest and cross-validation490

parts, may also perturb the final results. For example,491

during the training of random forest, the classifier will492

randomly select a subset of features to build a deci-493

sion tree. Similarly, in the 5-fold cross-validation, the494

training data may be different. Considering the small495

dataset size in the current experiments, the minor vari-496

ance in our results demonstrates that the influence of497

random patch selection is in a reasonable range and498

does not appreciably affect the stability of the results.499

In future, we will further explore the random patch500

selection issue with larger imaging cohorts.501

Future directions will include integrating convolu-502

tional neural network (CNN) with our proposed ap-503

proach. CNN is considered one of the most successful504

deep models for identifying, classifying, and quanti-505

fying patterns in medical images [46, 47]. Based on506

promising results from our most recent work [48, 49],507

integrating CNN with the proposed approach could 508

further improve the PASS results. Specifically, we 509

applied CNN and an unsupervised learning method 510

(multi-task stochastic coordinate coding) algorithm 511

to the ADNI dataset to predict future cognitive clin- 512

ical measures with baseline hippocampal/ventricle 513

mTBM features and cortical thickness, achieving 514

accurate predictions of MMSE/ADAS-Cog scales 515

[48, 49]. However, there is a trade-off between com- 516

putation efficiency and prediction performance. 517

Training a CNN model usually requires substan- 518

tial computational resources (multiple GPUs). Our 519

PASS-MP is a generative toolbox for brain image 520

analysis with fast running time and does not require 521

GPU for training. It can apply to different subcorti- 522

cal of brain images with relatively high performance. 523

We therefore will continue to explore the efficient 524

CNN based sparse coding method that could both 525

improve the prediction power and maintain a low-cost 526

of computational resources and fast running time as 527

PASS-MP for better help with clinical diagnosis and 528

prognosis. 529

Although there are many other sensitive biomark- 530

ers to detect the pathology associated with AD, this 531

method capitalizes on MRI scans, which is a clini- 532

cal diagnostic capability that virtually all clinicians 533

have access to. Further testing is needed to verify the 534

results in larger data sets, but our method appears to 535

accurately predict whether an individual will progress 536

to the clinical stages of AD within the next 2 years. 537

Thus, this method has the potential to be developed 538

into a clinically useful tool. We currently have no 539

proven medication treatments for AD; however, well- 540

tested behavioral programs that provide lifestyle and 541

behavioral training to adapt to memory loss associ- 542

ated with MCI are available [50]. These behavioral 543

programs appear to be most effective when done prior 544

to significant memory decline [51]. If we had an 545

accurate and inexpensive tool to predict likelihood of 546

clinically significant decline, we could target those 547

individuals who would most benefit from a similar 548

intervention that is delivered preclinically. 549

Limitations of this study include relatively small 550

numbers of progressors and nonprogressors in both 551

cohorts and thus this method will need to be repli- 552

cated in other, larger data sets. Importantly, we also 553

did not include other biomarkers such as amyloid or 554

tau to verify that progressors had MCI due to AD 555

or include other imaging, CSF, and emerging, less 556

expensive and more scalable blood-based biomark- 557

ers of amyloid, tau, and neurodegeneration [1–3], 558

and future applications of this technique should do 559
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so to ensure accurate training sets and generalizable560

results. However, we were interested in seeing the561

“added value” of this MRI based image analysis tech-562

nique as a complement to those emerging methods.563

We did not test brain regions other than hippocampus,564

but the purpose of this study was to evaluate the utility565

of prediction using hippocampal surface multivariate566

morphometry statistics combined with patch-based567

sparse coding algorithms. It was therefore convenient568

to compare these methods using the same data set569

that we had previously evaluated with standard auto-570

mated brain mapping algorithmic programs, binary571

logistic regression, and leave-one-out procedures.572

Also, our previous study did explore other imaging-573

based biomarkers and found that the hippocampus574

was the best predictor 2 years prior to clinically575

significant decline (including both FDG-PET and576

MRI biomarkers). Finally, because of the overlapping577

patch selection and max-pooling scheme, we gen-578

erally cannot visualize the selected features, which579

may decrease the interpretability of biomarkers and,580

in turn, translation to clinical applications. How-581

ever, we can always visualize statistically significant582

regions using group differences [6]. In addition, our583

recent work [52] better addresses this problem with584

the adoption of group lasso screening [53] to select585

the most significant features. It was not adopted586

in our current study because of its relatively small587

sample size. In the future, we will incorporate this588

approach into our current framework to improve its589

interpretability.590
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[38] Staglianò A, Chiusano G, Basso C, Santoro M (2010) Learn-805

ing adaptive and sparse representations of medical images806

In International MICCAI Workshop on Medical Computer807

Vision Springer, Berlin, Heidelberg, pp. 130-140.808

[39] Zhang ST, Zhan YQ, Metaxas DN (2012) Deformable seg-809

mentation via sparse representation and dictionary learning.810

Med Image Anal 16, 1385-1396.811

[40] Lv JL, Ling BB, Li QY, Zhang W, Zhao Y, Jiang X, Guo L,812

Han JW, Hu XT, Guo C, Ye JP, Liu TM (2017) Task fMRI813

data analysis based on supervised stochastic coordinate cod-814

ing. Med Image Anal 38, 1-16.815

[41] Fu WJ (1998) Penalized regressions: The bridge versus the816

lasso. J Comput Graph Stat 7, 397-416.817

[42] Lin B, Li Q, Sun Q, Lai MJ, Davidson I, Fan W, Ye818

J (2014) Stochastic coordinate coding and its applica-819

tion for Drosophila gene expression pattern annotation.820

arXiv:1407.8147v2821

[43] Coates A, Ng AY (2011) The importance of encoding versus822

training with sparse coding and vector quantization. Pro-823

ceedings of the 28th International Conference on Machine824

Learning 11, 921-928.825

[44] Breiman L (2001) Random forests. Mach Learn 45, 5-32.826

[45] Luders E, Thompson PM, Kurth F, Hong JY, Phillips OR,827

Wang Y, Gutman BA, Chou YY, Narr KL, Toga AW (2013)828

Global and regional alterations of hippocampal anatomy in829

long-term meditation practitioners. Hum Brain Mapp 34, 830

3369-3375. 831

[46] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, 832

Ghafoorian M, van der Laak JAWM, van Ginneken B, 833

Sanchez CI (2017) A survey on deep learning in medical 834

image analysis. Med Image Anal 42, 60-88. 835

[47] Shen DG, Wu GR, Suk HI (2017) Deep learning in medical 836

image analysis. Annu Rev Biomed Eng 19, 221-248. 837

[48] Dong Q, Zhang J, Li Q, Thompson PM, Caselli RJ, Ye 838

J, Wang Y, Initiative AsDN (2019) Multi-task dictionary 839

learning based on convolutional neural networks for lon- 840

gitudinal clinical score predictions in Alzheimer’s disease. 841

In International Workshop on Human Brain and Artificial 842

Intelligence, Zeng A, Pan D, Hao T, Zhang D, Shi Y, Song 843

X, eds. Springer Singapore, pp. 21-35. 844

[49] Dong Q, Zhang J, Li Q, Wang J, Lepore N, Thompson 845

PM, Caselli RJ, Ye J, Wang Y (2020) Integrating convo- 846

lutional neural networks and multi-task dictionary learning 847

for cognitive decline prediction with longitudinal images. J 848

Alzheimers Dis 75, 971-992. 849

[50] Chandler MJ, Locke DE, Crook JE, Fields JA, Ball CT, 850

Phatak VS, Dean PM, Morris M, Smith GE (2019) Com- 851

parative effectiveness of behavioral interventions on quality 852

of life for older adults with mild cognitive impairment: A 853

randomized clinical trial. JAMA Netw Open 2, e193016. 854

[51] De Wit L, Chandler M, Amofa P, DeFeis B, Mejia A, 855

O’Shea D, Locke DEC, Fields JA, Smith GE (2021) Mem- 856

ory Support System training in mild cognitive impairment: 857

Predictors of learning and adherence. Neuropsychol Rehabil 858

31, 92-104. 859

[52] Zhang J, Tu Y, Li Q, Caselli RJ, Thompson PM, Ye J, 860

Wang Y (2018) Multi-task sparse screening for predicting 861

future clinical scores using longitudinal cortical thickness 862

measures. Proc IEEE Int Symp Biomed Imaging 2018, 1406- 863

1410. 864

[53] Wang J, Wonka P, Ye JP (2015) Lasso screening rules via 865

dual polytope projection. J Mach Learn Res 16, 1063-1101. 866


